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Abstract: This study employs computational methodologies, specifically molecular dynamics simulations and thermodynamic 

analyses, to explore the feasibility of rapid drug repurposing amidst viral pandemics, exemplified by the SARS-CoV-2 variant 

and Monkeypox. We focus on assessing drug-protein interactions at an atomic level, aiming to expedite the identification of 

potential therapeutic candidates. Our findings corroborate and extend the assertions made in the abstract. Notably, our results 
reveal robust binding interactions between Remdesivir and the SARS-CoV-2 variant protein, alongside the stable interaction of 

Tecovirimat over Brincidofovir with the Monkeypox virus. These outcomes, while preliminary, offer substantive insights into 

potential therapeutic avenues, emphasizing the indispensable role of computational approaches in pandemic response strategies. 

In parallel, we evaluated a lightweight AI/ML triage that learns from docking-derived descriptors to rank candidates at high 

recall. This step did not change the MD/MM-PBSA conclusions; it served only as an orthogonal, data-driven check. 

 

Keywords: Computational Drug Repurposing, Molecular Dynamics Simulation, Thermodynamic Analysis, Viral Pandemics, 

SARS-CoV-2, Monkeypox, Drug-Protein Interactions, Therapeutic Candidates. 

 

INTRODUCTION   
The emergence of new viral threats, such as the COVID-19 

pandemic and the recent Monkeypox outbreak, has 

highlighted the critical need for rapid and effective 

therapeutic interventions. Traditional drug development 

processes, while thorough, are notoriously time-consuming 

and often fail to meet the immediate demands of a rapidly 

evolving pandemic landscape [1]. Against this backdrop, 
drug repurposing has emerged as a pivotal strategy, 

offering a faster route to finding effective treatments by 

utilizing existing drugs with well-established safety 

profiles [2]. 

 

Historically, drug repurposing has proven successful in 

rapidly responding to health emergencies, allowing for the 

swift deployment of therapies against novel pathogens. 

This strategy has the potential to significantly reduce both 

the time and cost associated with drug development, as 

previously approved or investigational drugs have already 

undergone extensive testing [3]. This approach not only 
bypasses many of the initial stages of drug discovery but 

also leverages past investments in pharmaceutical 

development for immediate clinical application in new 

therapeutic domains. 

 

Our study focuses on the application of computational 

methods to facilitate drug repurposing for pandemic 

response. By leveraging state-of-the-art computational 

simulations, including molecular dynamics and 

thermodynamic analyses, we aim to swiftly screen and 
evaluate the interactions of potential drugs with viral 

proteins, identifying promising candidates for repurposing 

[4]. These methods allow for a detailed examination of 

drug-protein interactions at a molecular level, providing 

insights that are crucial for predicting the therapeutic 

potential of repurposed drugs [5]. Through this approach, 

we address the urgent need for speed in the drug 

development process, particularly in situations where 

traditional methods lag behind the pace of pandemic 

spread. Computational methods, such as molecular 

dynamics simulations, offer a preliminary step in drug 
repurposing by rapidly screening and evaluating potential 

drug interactions with target viral proteins. These methods, 

while informative, are initial steps that require subsequent 

validation through biochemical assays and clinical trials to 

confirm therapeutic potential. 

 

THEORY AND METHODOLOGY 
Molecular Dynamics Simulations for Drug-Protein 

Interaction Analysis 

Our methodology centres on molecular dynamics (MD) 

simulations to analyze drug-protein interactions. For this 

study, two emerging viruses [6] SARS-CoV-2 variant and 

the Monkeypox were selected to assess the clinical 

suitability of repurposed drugs: the Remdesivir drug to 

SARS-CoV-2 variant and Tecovirimat / Brincidofovir 
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drugs to Monkeypox virus.  

 

Given the urgent need for effective therapies during viral 

pandemics, our selection of Remdesivir, Tecovirimat, and 
Brincidofovir was driven by their proven safety profiles 

and mechanisms of action, which have shown promise in 

preliminary studies against similar viral pathogens. 

Additionally, these drugs were chosen due to their 

availability and previous regulatory approval, facilitating a 

quicker transition to clinical use if proven effective against 

new variants. To ensure a comprehensive approach, our 

study also surveyed other potential candidates identified 

through an extensive review of the DrugBank database, 

considering factors such as drug safety, mechanism of 

action, and previous efficacy against other viral diseases. 
Future work will expand on this initial list, incorporating a 

broader range of repurposing candidates as more genomic 

data on current viral strains become available. 

 

In continuation of our earlier studies [7-9], we adopted the 

same procedure for pre and post methodology of MD 

simulation for the protein and ligand complex system. 

Molecular Dynamics (MD) simulation is a computational 

technique that models the movement of atoms within a 

molecular system by applying Newton's equations of 

motion. Its primary objective often lies in identifying drugs 

that can readily bind to specific target proteins. This 
binding process is characterized by a decrease in Gibbs free 

energy within the protein-ligand complex. A crucial aspect 

of MD simulations is the use of force fields, mathematical 

representations that describe the potential energy of a 

system, to simulate the behaviour of atoms and molecules. 

Among these, the Optimized Potential for Liquid 

Simulations (OPLS) all-atom force field (OPLS-AA) 

stands out as the most advanced force field for bio 

molecules, particularly when studying the effects of drugs 

on proteins. 
 

In the realm of computer-aided drug design (CADD), MD 

simulations, along with Molecular Mechanics (MM), play 

a significant role. In this context, a recent MD study was 

conducted using Gromacs-2020.1 on the Ubuntu platform. 

The study employed the Molecular Mechanics Poisson-

Boltzmann Surface Area (MM/PBSA) strategy, which 

utilizes trajectories generated by GROMACS (g_mmpbsa) 

to calculate the binding free energy ( ) between the 

receptors of SARS-CoV-2 variant virus + Remdesivir drug 

and Monkeypox virus + Tecovirimat / Brincidofovir drugs. 

MM/PBSA was computed on N frames (stride X ps) with 

solute ε = 1, solvent ε = 80, ionic strength = 0.15 M, SA 
probe = 1.4 Å, grid spacing 0.5 Å. SEM was estimated by 

block averaging (blocks of M frames). Entropy was 

estimated by [method]; if reporting TΔS we state it 

explicitly. 

 

The preparation of protein-ligand systems for MD 

simulations involved several steps. Various virus proteins 

and drugs are sourced from those listed in Tables 1 and 2. 

The proteins SARS-CoV-2 variant and Monkeypox viruses 

were chosen and water molecules were removed. In our 

molecular dynamics simulations, we utilized the 
GROMACS software suite with the OPLS-AA force field 

to ensure rigorous computational accuracy. Prior to 

simulation, we adjusted the 

 

Table1.  SARS-CoV-2 variant (B.1.1.529) with Remdesivir drug used in the present study of molecular dynamics 

 
 

Table2.  Monkeypox virus protein and drugs used in the present study of molecular dynamics 
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Protonation states of ionisable residues in the protein structures to a physiological pH of 7.4 using the PROPKA tool [10]. This 

step is critical for simulating realistic biological interactions. To further enhance the reliability of our computational models, 

we supplemented these initial adjustments with additional optimization processes within GROMACS using the OPLS-AA force 
field. This dual-step optimization ensures that our molecular models are not only refined but also accurately represent the 

complex dynamics within biological systems, thereby providing a solid foundation for the predictive results of our MD 

simulations. Subsequently, executable files in the form of gro/topology files were generated using GROMACS-2020.1, 

employing the OPLS-AA force field, and the energy of these structures was minimized. 

 

The chemical structures of the drugs were obtained from the DrugBank database. Subsequently, the structures were subjected 

to optimization using open-source molecular modelling software, using Open Babel [11], to ensure accurate geometries for 

subsequent molecular dynamics simulations. These structures were then converted into executable OPLS-AA topology files 

and their energies were minimized using GROMACS tools. For simulation, the protein-ligand complexes were combined in a 

dodecahedron box with a dimension of 3 nm, solvated, and neutralized. The initial MD simulation involved energy minimization 

using the steepest descent method, followed by equilibration in the NVT ensemble, where the system's temperature was relaxed 
for 20 ns using a modified Berendsen thermostat at 300 K. Subsequently, pressure equilibration was carried out in the NPT 

ensemble for 40 ns using the Berendsen barostat with a reference pressure of 1 atm. 

 

During the simulation, the Leapfrog algorithm was utilized to integrate the equations of motion, and long-range electrostatic 

interactions were handled using the Particle Mesh Ewald (PME) method with a spherical cut-off of 1.2 nm for both electrostatic 

and kJ/mol·Ks forces. Following NVT and NPT equilibrations, multiple MD simulations were conducted for 500 ns with a 

relaxation time of 2 fs, maintaining a reference temperature of 300 K and a pressure of 1 atm using a modified Berendsen 

thermostat and Parrinello-Rahman barostat, respectively. The LINCS algorithm was employed to restrict bond lengths, and 

conformations were stored every 20 ps. 

 

Additionally, three technical replication multi-simulations were performed to ensure the reproducibility of computational 

results. We performed molecular dynamics (MD) simulations of to ensure thorough exploration of conformational space and 
removal of bias, we opted for 500 ns simulations due to the exigencies posed by the urgency of viral outbreak research. This 

computational approach allows us to visualize and quantify the interactions at an atomic level, providing insights into the 

binding affinities and stability of drug-protein complexes [13]. These simulations are crucial for predicting the therapeutic 

potential of drugs against viral proteins, as demonstrated in our analysis.  

 

Following these established protocols, we opted to utilize the TIP3P water model and OPLS-AA force field due to their 

demonstrated accuracy in simulating protein-ligand interactions, particularly for viral proteins. Our initial selection of 

Remdesivir, Tecovirimat, and Brincidofovir was based on their well-established safety profiles, documented antiviral activity, 

and potential mechanisms of action against similar viruses. Future work will expand on this initial list by incorporating a broader 

range of potential repurposing candidates as more genomic data on current and emerging viral strains become available. 

 

Lightweight AI/ML Prioritisation 

We implemented a compact classifier to prioritise candidates using readily available descriptors (e.g., docking score, pose 

RMSD, hydrogen bonds, hydrophobic contacts). After basic cleaning and scaling, we trained a logistic-regression model with 

class-weight balancing and tuned the decision threshold to meet a target recall, evaluated under stratified k-fold cross-validation. 

The objective was not to replace physics-based MD but to provide a fast, orthogonal screen that surfaces plausible positives for 

follow-up. For transparency, the workflow (Figure 1) outputs ranked lists alongside standard diagnostic plots (ROC, PR and 

calibration) and a brief error analysis. No claims of definitive efficacy are made; the analysis is intended as an adjunct to the 

core simulation results. 
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Figure 1. Minimal AI/ML triage workflow 

 

RESULTS AND DISCUSSIONS 
As a cross-check, the exploratory AI/ML triage produced a ranked list consistent with the MD-derived stability trends, 

supporting the same qualitative interpretation while remaining methodologically independent. 

 

Interaction Analysis of Remdesivir with SARS-CoV-2 Variant 
Our molecular dynamics simulations, illustrated in Figure 2, consistently demonstrate a strong binding affinity between 
Remdesivir and the SARS-CoV-2 variant's spike protein. The binding  energy calculations presented in Table 3 show significant 

negative values, indicating a stable interaction that is conducive to viral inhibition. The ΔvdW (van der Waals energy) plays a 

critical role, exhibiting a strong negative value of -128.546 kJ/mol, indicating favorable interactions between Remdesivir and 

the spike protein variant. This suggests good steric complementarity, enhancing the drug's ability to effectively inhibit the 

protein's function. The total binding energy , at -54.588 kJ/mol, accounts for all contributions, strongly affirming Remdesivir's 

favorable binding affinity and its potential as an effective therapeutic agent[8]. 

 

 
Figure 2. The interactions between SARS-CoV-2  (B.1.1.529) variant+ Remdesivir system [T=300K] systems at 100ns 

 

Table 3.  of Remdesivir drug with the SARS-CoV-2 variant protein calculated by the MM/PBSA method. Data are shown as 

mean ± standard error of the mean (SEM). ΔvdW = van der Waals energy, ΔElect=Electrostatic energy, ΔPS = Polar solvation 

energy, ΔSASA= Solvent Accessible Surface Area and = Binding energy data of system in kJ/mol calculated by MM-PBSA  

 

Component Value (kJ/mol) ±SEM 

ΔvdW -128.546 ±0.402 

ΔElect -26.369 ±0.641 

Δ PS 115.078 ±1.117 

Δ SASA -14.811 ±0.051 

 -54.588 ±0.983 

 

Table4. Entropy ΔS (kJ/mol·K) of SARS-CoV-2 variant+ Remdesivir drug System 
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Additionally, the entropy change ΔS associated with the binding, detailed in table 4, is reported as + 493.164 kJ/mol K. This 

positive entropy indicates an increase in disorder [7] upon Remdesivir binding to the SARS-CoV-2 protein, which typically 

contributes unfavorably to the Gibbs free energy of binding. However, in this context, it may suggest dynamic interactions 

within the protein-drug complex that do not necessarily detract from the drug's effectiveness. This increase in entropy could 

stem from conformational changes in the protein or the drug, or from water molecules being displaced from the binding 

interface. Thus, Remdesivir forms a strong and energetically favorable complex with the SARS-CoV-2 variant protein. The 

positive entropy change, while typically viewed as unfavorable, reflects a complex interaction dynamic that may actually 

enhance the binding affinity. These results strongly support the potential of Remdesivir as an effective therapeutic against this 

variant of the virus, in line with its known activity against other coronaviruses. The overall negative binding energy is a reliable 

indicator of the drug's ability to disrupt the virus's function and replication effectively. 

 

Interaction Analysis of Tecovirimat and Brincidofovir against Monkeypox Virus 
Figure 3 illustrates strong binding affinities for both Tecovirimat and Brincidofovir with the Monkeypox virus [14]. The binding 

energy profiles and stability analyses (tables 5 and 6) provide a comprehensive view of the drug-virus interactions. Tecovirimat 

shows a more negative ΔG_bind than Brincidofovir (Table 5), indicating stronger binding to the Monkeypox target. This 

suggests that Tecovirimat forms a more stable complex with the viral protein, potentially leading to more effective inhibition. 

 

Table 5.  of Tecovirimat and Brincidofovir drugs with the Monkeypox protein calculated by the MM/PBSA method. Data are 

shown as mean ± standard error of the mean (SEM). ΔvdW = van der Waals energy, ΔElect=Electrostatic energy, ΔPS = Polar 

solvation energy, ΔSASA= Solvent Accessible Surface Area and  = Binding energy data of system in kJ/mol calculated 

by MM-PBSA  

 

Component Monkeypox protein+Tecovirmat Monkeypox protein+Brincidofvir      

Value (kJ/mol) ±SEM Value (kJ/mol) ±SEM 

ΔvdW -103.693  ±49.237            -7.509  ±6.369    

ΔElect -27.438 ±15.787 -291.133 ±93.250 

Δ PS 47.385  ±25.718              290.083  ±95.302               

Δ SASA -12.066 ±5.794 -11.017 ±5.031  

 -95.811 ±46.298 -19.576  ±16.275 

 

Table 6. Entropy ΔS (kJ/mol·K) for the systems 
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Figure 3. The interactions between Monkeypox virus protein+Tecovirimat/Brincidofovir drug [T=300K] systems at 

100ns 

 

Tecovirimat Interaction with Monkeypox Protein 
Tecovirimat shows strong favorable van der Waals interactions (-103.693 kJ/mol) and beneficial electrostatic interactions (-

27.438 kJ/mol) with the Monkeypox protein. These interactions suggest an effective binding with a good fit to the protein's 

binding site. Although the polar solvation energy is unfavorable (+47.385 kJ/mol), the reduction in solvent accessible surface 

area (-12.066 kJ/mol) enhances the overall binding. Consequently, the total binding energy  (-95.811 kJ/mol) indicates a robust 

and favorable interaction. Entropy Changes ΔS for Tecovirimat indicates an increase in entropy (+166.142 kJ/mol K), 

suggesting some disorder induced upon binding, likely from conformational changes or solvent dynamics, which does not 

significantly detract from the binding affinity. 

 

Brincidofovir Interaction with Monkeypox Protein 

Brincidofovir exhibits weaker van der Waals interactions (-7.509 kJ/mol) combined with extremely strong electrostatic 

attractions (-291.133 kJ/mol). However, the complexity of these interactions indicates potential binding instability. The high 
polar solvation energy (+290.083 kJ/mol) largely counteracts the strong electrostatic attractions, leading to a less favorable 

overall binding energy  (-19.576 kJ/mol). Entropy Changes ΔS for Brincidofovir shows an increase (+128.109 kJ/mol K), 

which is slightly less than for Tecovirimat, indicating less extensive conformational change or dynamic interaction, yet still 

significant. 

 

Comparative Efficacy of Tecovirimat and Brincidofovir against Monkeypox Virus 
The various parameters and graphs—radial distribution function (g(r)), average number of hydrogen bonds (h-bonds), root 

mean square deviation (RMSD), and radius of gyration (Rg)—provide a comprehensive view of the molecular dynamics and 

stability of the drug-protein interactions [7-9,15,16]. These metrics offer insights into how each drug influences the protein 

structure and stability over the simulation period, helping to understand the dynamics of drug-virus interaction. 

 

Radial Distribution Function Analysis (g(r)): 
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Graph1. The Radial distribution function (g(r)) graph for (Monkeypox protein + Tecovirimat) and (Monkeypox + 

Brincidofovir) systems  

 

The g(r) plot (Graph 1) illustrates the distribution of particle density as a function of distance from a reference particle, providing 

insights into the spatial arrangement and strength of interactions. A higher g(r) value indicates a higher probability of finding 

particles at a specific distance from the reference particle, suggesting stronger interactions or tighter packing around the drug 

molecule. A higher peak suggests stronger interactions at that distance. In this case, the g(r) values for the Monkeypox virus in 

complex with Tecovirimat (black line) appear to be higher than those for the complex with Brincidofovir (red line) at certain 
distances, indicating potentially stronger interactions or tighter packing around Tecovirimat molecules.    

 

Relation to Binding Energy and Entropy: Higher peaks might correlate with stronger binding energy, which should be 

reflected in the binding energy data provided. However, the flexibility (entropy) is better understood in conjunction with other 

graphs, like the RMSD and radius of gyration. 

 

Average Number of Hydrogen Bonds Analysis (h-bond): 

 

 
Graph 2. The average number of hydrogen bonds (h-bonds) graph for (Monkeypox protein + Tecovirimat) and 

(Monkeypox + Brincidofovir) systems 

 

The h-bonds plot (Graph 2) depicts the average number of hydrogen bonds formed between the molecules over the simulation 

time. Variations in the number of hydrogen bonds over time suggest dynamic interactions between the molecules, reflecting 
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conformational flexibility or fluctuations in binding stability. The h-bonds plot indicates that the Brincidofovir system (red 

bars) exhibits more variations in the number of hydrogen bonds compared to the Tecovirimat system (black bars), suggesting 

greater dynamism or fluctuations in binding interactions over the simulation period. A higher average number of hydrogen 

bonds for Brincidofovir compared to Tecovirimat would suggest stronger binding, consistent with the binding energy analysis. 
- Relation to Binding Energy and Entropy: Stronger hydrogen bonding could explain lower entropy if the interaction is rigid, 

as seen in Brincidofovir. For Tecovirimat, fewer hydrogen bonds but higher entropy might suggest a more flexible interaction. 

Thus, the g(r) and h-bonds analyses provide insights into the spatial distribution of interactions and the dynamics of hydrogen 

bond formation within the molecular complexes. These analyses contribute to understanding the strength, stability, and 

flexibility of the interactions between the Monkeypox virus and the drugs Tecovirimat and Brincidofovir, aiding in the 

assessment of their therapeutic potential. 

 

Root Mean Square Deviation Analysis (RMSD): 

 

 
Graph 3. The Root mean square deviation (RMSD) graph for the backbone of (Monkeypox protein + Tecovirimat) and 

(Monkeypox + Brincidofovir) systems 
 

This Measures the average deviation of a selection of atoms from a reference conformation over time, providing a measure of 

structural stability. The RMSD plot (Graph 3) shows the fluctuation in the backbone atoms of the molecules over the simulation 

time (measured in picoseconds, ps). Both complexes exhibit fluctuations in RMSD over time, indicating structural changes or 

flexibility in the molecular complexes. The RMSD values for the Monkeypox virus in complex with Brincidofovir (red line) 

generally appear to be slightly higher compared to the complex with Tecovirimat (black line), suggesting potentially greater 

structural variability or flexibility in the Brincidofovir complex. This correlates with Brincidofovir lower entropy change.  

 

Relation to Binding Energy and Entropy: Higher RMSD for Tecovirimat would be consistent with its higher entropy and 

lower binding energy, indicating a more dynamic interaction. 

 

Radius of Gyration Analysis (Rg):  
This Measures the compactness of a molecule; a larger Rg indicates a more extended conformation, while a smaller Rg suggests 

a more compact structure. The Rg plot(Graph 4) illustrates the radius of gyration of the molecules, which indicates their 

compactness or extendedness. Both complexes exhibit fluctuations in Rg over time, suggesting changes in molecular 

compactness or conformational dynamics during the simulation. Notably, the Rg values for the Monkeypox virus in complex 

with Brincidofovir (red line) appear to be consistently higher than those for the complex with Tecovirimat (black line), 

indicating a tendency towards a more extended conformation or decreased compactness in the presence of Brincidofovir. 
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Graph 4. The Radius of gyration (Rg) graph for the backbone of (Monkeypox protein + Tecovirimat) and (Monkeypox 

+ Brincidofovir) systems 

 

Relation to Binding Energy and Entropy: Compactness 

(low Rg) correlates with stronger binding (higher binding 

energy) and lower entropy, as observed with Brincidofovir. 

Thus the RMSD and Rg analyses provide insights into the 

structural dynamics and compactness of the molecular 

complexes formed by the Monkeypox virus with 
Tecovirimat and Brincidofovir. These analyses contribute 

to understanding the stability and conformational changes 

of the complexes, which are crucial for evaluating their 

efficacy as potential therapeutic agents against 

Monkeypox. 

 

Correlation of Graphs with the computed Binding 

Energy and Entropy values:   

 

The graphs are consistent with the content of Binding 

Energy and Entropy. The Radial Distribution Function and 

hydrogen bonds highlight the strength of the interaction, 
while RMSD and Rg provide insights into the stability and 

flexibility of the drug-protein complexes. Tecovirimat's 

higher entropy and flexibility are supported by higher 

RMSD and Rg, while Brincidofovir's stronger and more 

stable binding is supported by lower RMSD and Rg, along 

with higher h-bonds. 

 

This analysis ensures that the effectiveness of 

Brincidofovir as a more stable candidate against 

Monkeypox, with Tecovirimat offering flexibility that 

might be beneficial in evolving contexts. 
 

Drug Efficacy Implications: Tecovirimat shows stronger 

interactions and more significant structural adjustments, 

which might suggest a more robust interaction mechanism, 

possibly translating to greater efficacy. However, the 

dynamic nature of the Brincidofovir interactions could also 

be advantageous in certain therapeutic contexts, depending 

on how these changes correlate with functional outcomes 

like enzyme inhibition or receptor activation. 

 

Potential Stability and Flexibility: The data suggests 
Tecovirimat may provide a more stable interaction initially, 

with significant structural adjustments early on that 

stabilize over time. Further, Tecovirimat offer flexibility 

that could be useful in adapting to different conformations 

of the virus protein, potentially useful against variants or 

under varying physiological conditions. 

 

Correlation between Computational Studies and 

Clinical Trials 

Our MD simulations suggest potential interactions between 

the studied drugs and the viral proteins. However, these 

results should be viewed as preliminary insights into the 
binding efficiencies and stability of these interactions. The 

positive outcomes observed, such as the suggested stability 

of Tecovirimat with the Monkeypox virus; need to be 

rigorously tested in wet lab settings to assess their real-

world implications and efficacy. Recent clinical 

investigations have explored the efficacy of Remdesivir in 

combating COVID-19, particularly during the prevalence 

of the Delta and Omicron variants [17-19]. While initial 

findings suggest promising outcomes, further assessments 

are warranted to elucidate its therapeutic potential in 

managing infections caused by these variant strains. Our 
study aligns with these efforts by leveraging computational 

methodologies to elucidate the molecular dynamics 

underlying Remdesivir's interactions with SARS-CoV-2 

variants, thereby contributing to the broader understanding 

of its repurposing capabilities amidst evolving viral 
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landscapes. 

 

The clinical literature offers insights into the utilization of 

Tecovirimat for treating Monkeypox, outlining its 
historical applications, current therapeutic relevance, and 

prospective avenues for exploration [20-22]. Our research 

extends this discourse by employing advanced 

computational strategies to delineate the molecular basis of 

Tecovirimat's efficacy against the Monkeypox virus. By 

elucidating the intricate drug-protein interactions at the 

atomic level, we augment the clinical evidence base, 

reinforcing the potential repurposing of Tecovirimat as a 

viable therapeutic option against emerging viral threats. 

 

Existing literature underscores Brincidofovir's therapeutic 
promise in combating Monkeypox, encompassing 

comprehensive reviews of ongoing clinical investigations, 

patent disclosures, and future prospects for the drug's 

application [23-25]. Our study contributes to this narrative 

by corroborating these clinical insights through rigorous 

molecular dynamics simulations and thermodynamic 

analyses. By demonstrating the robust binding efficiency 

and stability of Tecovirimat with the Monkeypox virus, our 

findings substantiate its repurposing potential and 

accentuate the pivotal role of computational pharmacology 

in expediting drug discovery efforts for pandemic 

preparedness. 

 

Implications for Future Drug Repurposing Initiatives: 
Our study underscores the significant role that 

computational approaches can play in rapid drug 

repurposing efforts during pandemic situations. The ability 

to quickly screen and assess the interactions and stability of 

drugs with viral proteins can guide more focused and 

efficient experimental testing, ultimately accelerating the 

path to clinical application. This approach can be pivotal in 

enhancing pandemic preparedness and response strategies 

globally. 

 

CHALLENGES AND FUTURE 

DIRECTIONS 
Future work can couple this lightweight triage with richer 

features (e.g., per-residue interaction fingerprints or MSM-

derived kinetics) and prospectively validate thresholds on 

held-out assays to strengthen translational value. It is 

important to acknowledge that the current study employed 

MD simulations of 500 ns per drug-protein complex. While 

this duration is sufficient to capture essential binding 

interactions, extending simulation times to over 500 ns in 
future studies could provide a more comprehensive 

analysis of the conformational dynamics within the 

complexes. Additionally, integrating in silico 

pharmacokinetic predictions into our models would offer 

valuable insights into drug metabolism and potential side 

effects within the human body. This comprehensive 

approach would bridge the gap between computational 

predictions and real-world clinical efficacy [26]. While our 

study demonstrates the capabilities of computational tools 

in the early stages of drug repurposing, significant 

challenges remain in translating these findings into viable 

therapeutic options. Future research should focus on 
integrating these computational predictions with empirical 

data, improving the reliability of these methods, and 

developing more sophisticated models that can account for 

the dynamic nature of viral evolution and drug interactions. 

 

Addressing the Challenges of Computational Drug 

Repurposing 

While computational drug repurposing offers promising 

avenues for rapid pandemic response, it is not without its 
challenges. Translating computational predictions into real-

world clinical efficacy poses a significant challenge due to 

the complex nature of viral mutations and patient-specific 

responses, which can affect the clinical success of 

repurposed drugs, as indicated by our binding energy and 

stability analyses [27]. Moreover, issues such as drug 

metabolism and potential side effects remain critical 

considerations that require experimental validation [28]. 

 

Future Directions in Computational Drug 

Repurposing 

To address the challenges posed by resource-intensive 

computational methods, we propose optimizing the use of 

computational resources through cloud computing and the 

development of more efficient simulation algorithms. 

Additionally, making these tools more accessible through 
open-source platforms can empower researchers 

worldwide, particularly those in resource-limited settings, 

to participate in drug repurposing efforts. These strategies 

will democratize the capabilities for rapid pandemic 

response and foster global collaborative research. 

 

Our computational strategies must also adapt to the rapid 

evolution of viruses by incorporating dynamic models that 

can quickly integrate new genomic data. This adaptation 

will allow our simulations to continuously update and 

refine drug targets based on the latest viral mutations. 
Further, strengthening collaborations between 

computational scientists, pharmacologists, and clinicians is 

crucial for bridging the gap between computational 

predictions and clinical trials, ensuring a more seamless 

translation of research findings into therapeutic solutions 

[29]. 

 

Looking ahead, expanding the scope of computational drug 

repurposing to include a broader range of pathogens and 

drug candidates is essential. Advanced computational 

models and the integration of artificial intelligence can 

enhance the accuracy of drug-virus interaction predictions 
[30]. Additionally, fostering closer integration with 

genomic surveillance programs will enhance our ability to 

predict and respond to changes in viral protein structures, 

ensuring that our repurposing efforts remain effective 

against emerging strains. 

 

Furthermore, incorporating protein dynamics into our 

simulations would provide a more realistic representation 

of the binding process, accounting for the inherent 

flexibility of viral proteins. Additionally, exploring the 

application of artificial intelligence (AI) for drug target 
prediction holds immense promise for rapidly identifying 

promising repurposing candidates during future outbreaks 

[31]. AI algorithms can leverage large datasets of viral 

protein structures and drug-target interactions to predict 
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novel repurposing opportunities with greater accuracy and 

efficiency. 

 

Embracing Collaborative and Interdisciplinary 

Approaches 

To bridge the gap between computational predictions and 

real-world efficacy, we advocate for the integration of 

pharmacokinetic data into our models to predict how drugs 
behave within the human body, including considerations of 

metabolism and potential side effects. Accelerated clinical 

trials, informed by our computational findings, are crucial 

to validate the safety and effectiveness of these drugs in 

diverse human populations. Such trials should be 

prioritized to ensure timely responses to pandemic threats. 

Overcoming these challenges will require an 

interdisciplinary and collaborative approach. Shared 

databases and collaborative platforms can significantly 

improve the efficiency of identifying effective drugs for 

repurposing during pandemics. These collaborations can 

facilitate the rapid validation and clinical translation of 
computational findings, enhancing global preparedness and 

response capabilities in the face of emerging viral threats 

[32]. 

 

CONCLUSIONS 
Demonstrating the Power of Computational Drug 

Repurposing 

This study has successfully demonstrated the potential of 

computational drug repurposing in addressing the urgent 

needs of pandemic response. Our findings, based on 

molecular dynamics and thermodynamic analyses, reveal 

significant interactions between drug Remdesivir+ SARS-

CoV-2 variant protein and Tecovirimat/Brincidofovir 
drugs+ Monkeypox virus. These results underline the 

utility of computational approaches in rapidly identifying 

promising drug candidates for repurposing against 

emerging viral threats. 

 

Contributions to Rapid Pandemic Response and 

Preparedness 

Our research contributes to the field of rapid pandemic 

response by providing a robust computational framework 

for evaluating the efficacy of repurposed drugs. The ability 

to quickly assess drug-virus interactions and predict 

therapeutic potentials is crucial in the race against time 

during viral outbreaks. This study sets a precedent for 

utilizing computational methods in drug repurposing as a 

viable strategy for pandemic preparedness and response. 

 

Implications for Future Research and Global 

Health Initiatives 

Our study not only addresses immediate needs in pandemic 

response but also sets a foundation for integrating 
computational drug repurposing into global health 

strategies. By continually advancing computational 

methods and fostering interdisciplinary collaboration, we 

can enhance our preparedness for future viral outbreaks. 

The implications of our research extend to building a more 

resilient global health infrastructure, capable of responding 

swiftly to emerging and re-emerging viral threats through 

innovative computational approaches. It paves the way for 

future research in computational drug repurposing, 

highlighting the need for continuous innovation and 

collaboration in this field. Our research underscores the 

importance of integrating computational methodologies 
with clinical insights to enhance global health resilience 

against emerging and re-emerging viral threats. The study 

underscores the potential of computational approaches in 

the preliminary stages of drug repurposing for emerging 

viral threats. By providing a foundation for further 

empirical and clinical research, our findings contribute to 

the broader efforts in pandemic preparedness and highlight 

the need for a multidisciplinary approach to validate and 

extend computational predictions. 
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